

Welcome to pyksolve’s documentation!

Contents:

	Installing pyksolve
	Dependencies

	Installing binary wheels

	Installing from source
	PyPI

	GitHub

	Introduction
	About pyksolve

	Using pyksolve
	Small usage sample

	API Documentation
	pyksolve package
	Submodules

	pyksolve.solver module

	pyksolve.deferred module

Indices and tables

	Index

	Module Index

	Search Page

Installing pyksolve

Dependencies

pyksolve requires Python 3.6 or higher.

There are currently binary wheels available for Linux, macOSX and Windows on
PyPI for various Python versions.

Installing binary wheels

Run the following command:

pip3 install --upgrade pyksolve

Installing from source

Otherwise the package can be built from source, which requires a C++ tool chain
installed.

On Debian/Ubuntu based Linux, this command will install all
dependencies you need to build pyksolve:

sudo apt install build-essential python3-dev

On Windows, this [https://wiki.python.org/moin/WindowsCompilers] wiki
page contains all necessary information to get a compiler installed.

This package is not, as of yet tested on macOS, although in CI it seems to
build correctly for Python 3.8 .

PyPI

To install the source distribution from PyPI, run:

pip3 install --upgrade --no-binary pyksolve

GitHub

To install directly from the master branch of pyksolve, run the following
command:

pip3 install --upgrade git+https://github.com/tcdude/py-klondike-solver.git

Introduction

About pyksolve

pyksolve is a wrapper around
Klondike-Solver [https://github.com/ShootMe/Klondike-Solver] using Cython.

Using pyksolve

Small usage sample

from pyksolve import solver

s = solver.Solitaire()
s.shuffle1(42)
s.reset_game() # Needs to be called before a solve_* method runs!!

print(s.game_diagram())

result = s.solve_minimal_multithreaded(4)
if result == solver.SolveResult.SolvedMinimal:
 print('Found a solution:\n')
 print(s.moves_made())
else:
 print(f'No minimal solution found. SolveResult = "{repr(result)}"')

	This code creates a pyksolve.solver.Solitaire instance s
which is then shuffled with 42 as optionally specified random seed.
It is important, that pyksolve.solver.Solitaire.reset_game() is
called before one of the solve_* methods is called.

	It prints out the game diagram after the shuffle, before trying to solve
with a minimal solution using 4 hardware threads.

	Finally it verifies whether a minimal solution was found and either prints
the corresponding moves made or just what result code was received.

Further information is available in the API Documentation.

API Documentation

Modules:

	pyksolve package
	Submodules

	pyksolve.solver module

	pyksolve.deferred module

pyksolve package

A wrapper around the Klondike-Solver.

Submodules

pyksolve.solver module

Provides the wrapped main function of “KlondikeSolver.cpp”.

	
class pyksolve.solver.Solitaire

	Bases: object

Wrapper around the Solitaire C++ class from Klondike-Solver.

	
draw_count

	int -> Number of cards drawn for each draw move.

	Setter:

	int

	
foundation_count

	int -> Output of “FoundationCount()”.

	
game_diagram(self)

	Get the current game diagram in the default format.

	Returns

	str -> The game diagram in the default format.

	
game_diagram_pysol(self)

	Get the current game diagram in PySol format.

	Returns

	str -> The game diagram in the PySol format.

	
get_move_info(self, move_index)

	Move info as KlondikeSolver provides it.

	Parameters

	move_index – int -> valid move index.

	
get_pysol(self)

	Get the current card set in PySol format.

	Returns

	str -> The card set in the PySol format.

	
get_solitaire(self)

	Get the current card set.

	Returns

	str -> The card set in the default format.

	
load_pysol(self, card_set)

	Load a card set in the PySol format.

	Parameters

	card_set – str -> The card set in the PySol format.

	
load_solitaire(self, card_set)

	Load a card set in the default format.

	Parameters

	card_set – str -> The card set in the default format.

	
moves_made(self)

	Get a space delimited list of the moves made to solve.

	Returns

	str -> The moves delimited by single spaces.

	
moves_made_count

	int -> Output of “MovesMadeCount()”.

	
moves_made_normalized_count

	int -> Output of “MovesMadeNormalizedCount()”.

	
reset_game(self, draw_count=None)

	Calls the ResetGame method.

	Parameters

	draw_count – int -> Number of cards drawn for each draw move.

	
shuffle1(self, deal_number=-1)

	Calls the Shuffle1 method.

	Parameters

	deal_number – int -> Optional random seed.

	Returns

	int -> Random seed used to shuffle.

	
shuffle2(self, deal_number)

	Calls the Shuffle2 method.

	Parameters

	deal_number – int -> Random seed.

	
solve_fast(self, two_shift=0, three_shift=0, max_closed_count=None)

	Attempts to find a fast but possibly not minimal solution.

	Parameters

	
	two_shift – Optional[int] ->

	three_shift – Optional[int] ->

	max_closed_count – Optional[int] -> Maximum number of game states
to evaluate before terminating. Defaults to 5,000,000.

	Returns

	SolveResult -> The result of the attempt.

	
solve_minimal(self, max_closed_count=None)

	Attempts to find a minimal solution.

	Parameters

	max_closed_count – Optional[int] -> Maximum number of game states
to evaluate before terminating. Defaults to 5,000,000.

	Returns

	SolveResult -> The result of the attempt.

	
solve_minimal_multithreaded(self, num_threads, max_closed_count=None)

	Attempts to find a minimal solution, using multiple threads.

	Parameters

	
	num_threads – int -> Number of threads to use.

	max_closed_count – Optional[int] -> Maximum number of game states
to evaluate before terminating. Defaults to 5,000,000.

	Returns

	SolveResult -> The result of the attempt.

	
class pyksolve.solver.SolveResult

	Bases: enum.Enum

Solve result enum.

	
CouldNotComplete = -2

	

	
Impossible = 0

	

	
SolvedMayNotBeMinimal = -1

	

	
SolvedMinimal = 1

	

pyksolve.deferred module

Provides the DeferredSolver class that generates a number of solvable games for
faster access to a solvable seed on demand.

	
class pyksolve.deferred.DeferredSolver(draw_counts: Tuple[int, ...] = (1, 3), cache_num: int = 5, threads: int = 3, max_closed: int = 1000000, seed: Optional[int] = None)[source]

	Bases: object

Provides a cache of solved games, that is kept at a user defined number of
games for each specified draw count. To properly clean up, call
DeferredSolver.stop() when the DeferredSolver is no longer needed.

	Parameters

	
	draw_counts – Tuple[int, ...] -> for which draw count a cache is
generated. Defaults to (1, 3).

	cache_num – int -> number of solvable games to cache at any time.
Defaults to 5.

	threads – int -> number of workers to run solvers. Defaults to 3.

	max_closed – int -> max_closed argument to be passed to the
used pyksolve.solver.Solitaire.solve_fast() method. Defaults
to 1,000,000.

Warning

If you don’t call DeferredSolver.stop(), your program might hang
until terminated forcefully. After DeferredSolver.stop() was
called, the class is defunct!

	
get_solved(draw_count: int) → Tuple[int, str, str][source]

	Get a solved game from cache with the specified draw count.

	Parameters

	draw_count – int -> valid draw count value as specified on init.

	Returns

	Tuple of (seed, game_diagram before solved, moves_made).

	
stop()[source]

	Signals all threads to stop.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyksolve	

 	
 	
 pyksolve.deferred	

 	
 	
 pyksolve.solver	

Index

 C
 | D
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S

C

 	
 	CouldNotComplete (pyksolve.solver.SolveResult attribute)

D

 	
 	DeferredSolver (class in pyksolve.deferred)

 	
 	draw_count (pyksolve.solver.Solitaire attribute)

F

 	
 	foundation_count (pyksolve.solver.Solitaire attribute)

G

 	
 	game_diagram() (pyksolve.solver.Solitaire method)

 	game_diagram_pysol() (pyksolve.solver.Solitaire method)

 	get_move_info() (pyksolve.solver.Solitaire method)

 	
 	get_pysol() (pyksolve.solver.Solitaire method)

 	get_solitaire() (pyksolve.solver.Solitaire method)

 	get_solved() (pyksolve.deferred.DeferredSolver method)

I

 	
 	Impossible (pyksolve.solver.SolveResult attribute)

L

 	
 	load_pysol() (pyksolve.solver.Solitaire method)

 	
 	load_solitaire() (pyksolve.solver.Solitaire method)

M

 	
 	moves_made() (pyksolve.solver.Solitaire method)

 	
 	moves_made_count (pyksolve.solver.Solitaire attribute)

 	moves_made_normalized_count (pyksolve.solver.Solitaire attribute)

P

 	
 	pyksolve (module)

 	
 	pyksolve.deferred (module)

 	pyksolve.solver (module)

R

 	
 	reset_game() (pyksolve.solver.Solitaire method)

S

 	
 	shuffle1() (pyksolve.solver.Solitaire method)

 	shuffle2() (pyksolve.solver.Solitaire method)

 	Solitaire (class in pyksolve.solver)

 	solve_fast() (pyksolve.solver.Solitaire method)

 	solve_minimal() (pyksolve.solver.Solitaire method)

 	
 	solve_minimal_multithreaded() (pyksolve.solver.Solitaire method)

 	SolvedMayNotBeMinimal (pyksolve.solver.SolveResult attribute)

 	SolvedMinimal (pyksolve.solver.SolveResult attribute)

 	SolveResult (class in pyksolve.solver)

 	stop() (pyksolve.deferred.DeferredSolver method)

 All modules for which code is available

	pyksolve.deferred

	pyksolve.solver

 Source code for pyksolve.deferred

"""
Provides the DeferredSolver class that generates a number of solvable games for
faster access to a solvable seed on demand.
"""

import queue
import random
import threading
import time
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union

from . import solver

__author__ = 'Tiziano Bettio'
__license__ = 'MIT'
__version__ = '0.0.11'
__copyright__ = """Copyright (c) 2021 Tiziano Bettio

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE."""

MAX_SEED = 2 ** 31 - 1

def _worker(exit_e: threading.Event, e_conf: threading.Event,
 job_q: queue.Queue, res_q: queue.Queue, max_closed: int) -> None:
 """Worker thread -> consumes jobs that are executed in a Solver thread."""
 sol = solver.Solitaire()

 while not exit_e.is_set():
 try:
 seed, draw_count = job_q.get(timeout=0.001)
 except queue.Empty:
 continue
 sol.draw_count = draw_count
 sol.shuffle1(seed)
 sol.reset_game()
 if abs(sol.solve_fast(max_closed).value) == 1:
 res_q.put((seed, sol.draw_count, sol.moves_made()))
 job_q.task_done()
 e_conf.set()

def _filler(exit_e: threading.Event, e_conf:threading.Event, job_q: queue.Queue,
 res_q: queue.Queue, target: int,
 draw_counts: Tuple[int, ...]) -> None:
 """
 Filler thread -> keeps the result Queue filled with approximately the right
 amount of solutions per draw count.
 """
 job_no = 0
 mod = len(draw_counts)
 while not exit_e.is_set():
 if res_q.qsize() < target * mod and job_q.empty():
 job_q.put((random.randint(0, MAX_SEED), draw_counts[job_no % mod]))
 job_no += 1
 time.sleep(0.001)
 e_conf.set()

[docs]class DeferredSolver:
 """
 Provides a cache of solved games, that is kept at a user defined number of
 games for each specified draw count. To properly clean up, call
 :meth:`DeferredSolver.stop` when the `DeferredSolver` is no longer needed.

 Args:
 draw_counts: ``Tuple[int, ...]`` -> for which draw count a cache is
 generated. Defaults to `(1, 3)`.
 cache_num: ``int`` -> number of solvable games to cache at any time.
 Defaults to `5`.
 threads: ``int`` -> number of workers to run solvers. Defaults to `3`.
 max_closed: ``int`` -> max_closed argument to be passed to the
 used :meth:`pyksolve.solver.Solitaire.solve_fast` method. Defaults
 to `1,000,000`.

 .. warning::
 If you don't call :meth:`DeferredSolver.stop`, your program might hang
 until terminated forcefully. After :meth:`DeferredSolver.stop` was
 called, the class is defunct!
 """
 def __init__(self, draw_counts: Tuple[int, ...] = (1, 3),
 cache_num:int = 5, threads:int = 3,
 max_closed: int = 1_000_000,
 seed: Optional[int] = None) -> None:
 if not isinstance(draw_counts, tuple):
 raise TypeError('Expected type tuple for argument draw_counts.')
 for draw_count in draw_counts:
 if not 0 < draw_count < 8:
 raise ValueError('Expected draw_counts to lie between 1 and 7.')
 if not isinstance(cache_num, int):
 raise TypeError('Expected type int for argument cache_num.')
 if cache_num < 1:
 raise ValueError('Expected positive value for argument cache_num.')
 if not isinstance(threads, int):
 raise TypeError('Expected type int for argument threads.')
 if threads < 1:
 raise ValueError('Expected positive value for argument threads.')
 if not isinstance(max_closed, int):
 raise TypeError('Expected type int for argument max_closed.')
 if max_closed < 1:
 raise ValueError('Expected positive value for argument max_closed.')
 if seed is not None and not isinstance(seed, int):
 raise TypeError('Expected type int for argument seed.')
 self._job_queue = queue.Queue()
 self._result_queue = queue.Queue()
 self._exit_thread = threading.Event()
 self._exit_conf = (
 [threading.Event() for _ in range(threads)],
 threading.Event()
)
 self._draw_counts = draw_counts
 self._cache_num = cache_num
 for i in range(threads):
 worker = threading.Thread(target=_worker, args=(self._exit_thread,
 self._exit_conf[0][i], self._job_queue,
 self._result_queue, max_closed))
 worker.start()
 filler = threading.Thread(target=_filler, args=(self._exit_thread,
 self._exit_conf[1], self._job_queue,
 self._result_queue, cache_num, draw_counts))
 filler.start()
 self._solved: Dict[int, List[Tuple[int, str]]] = {}
 self._sol = solver.Solitaire()

[docs] def get_solved(self, draw_count: int) -> Tuple[int, str, str]:
 """
 Get a solved game from cache with the specified draw count.

 Args:
 draw_count: ``int`` -> valid draw count value as specified on init.

 Returns:
 Tuple of (seed, game_diagram before solved, moves_made).
 """
 if draw_count not in self._draw_counts:
 raise ValueError(f'Wrong draw_count = {draw_count}')
 if draw_count not in self._solved:
 self._solved[draw_count] = []
 while not len(self._solved[draw_count]):
 seed, g_draw_count, moves_made = self._result_queue.get()
 if g_draw_count not in self._solved:
 self._solved[g_draw_count] = []
 self._sol.shuffle1(seed)
 self._sol.reset_game()
 self._solved[g_draw_count].append((seed, self._sol.game_diagram(),
 moves_made))
 self._result_queue.task_done()
 return self._solved[draw_count].pop(0)

[docs] def stop(self):
 """
 Signals all threads to stop.
 """
 self._exit_thread.set()
 while True:
 time.sleep(0.001)
 if not self._exit_conf[1].is_set():
 continue
 clean = True
 for i in self._exit_conf[0]:
 if not i.is_set():
 clean = False
 break
 if clean:
 break

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to pyksolve’s documentation!

 		
 Installing pyksolve

 		
 Dependencies

 		
 Installing binary wheels

 		
 Installing from source

 		
 PyPI

 		
 GitHub

 		
 Introduction

 		
 About pyksolve

 		
 Using pyksolve

 		
 Small usage sample

 		
 API Documentation

 		
 pyksolve package

 		
 Submodules

 		
 pyksolve.solver module

 		
 pyksolve.deferred module

_static/up-pressed.png

_static/up.png

